3.68 \(\int \frac {1}{x \sqrt {a+c x^2} (d+e x+f x^2)} \, dx\)

Optimal. Leaf size=330 \[ \frac {f \left (\sqrt {e^2-4 d f}+e\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {f \left (e-\sqrt {e^2-4 d f}\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{\sqrt {a} d} \]

[Out]

-arctanh((c*x^2+a)^(1/2)/a^(1/2))/d/a^(1/2)+1/2*f*arctanh(1/2*(2*a*f-c*x*(e-(-4*d*f+e^2)^(1/2)))*2^(1/2)/(c*x^
2+a)^(1/2)/(2*a*f^2+(-(-4*d*f+e^2)^(1/2)*e-2*d*f+e^2)*c)^(1/2))*(e+(-4*d*f+e^2)^(1/2))/d*2^(1/2)/(-4*d*f+e^2)^
(1/2)/(2*a*f^2+(-(-4*d*f+e^2)^(1/2)*e-2*d*f+e^2)*c)^(1/2)-1/2*f*arctanh(1/2*(2*a*f-c*x*(e+(-4*d*f+e^2)^(1/2)))
*2^(1/2)/(c*x^2+a)^(1/2)/(2*a*f^2+((-4*d*f+e^2)^(1/2)*e-2*d*f+e^2)*c)^(1/2))*(e-(-4*d*f+e^2)^(1/2))/d*2^(1/2)/
(-4*d*f+e^2)^(1/2)/(2*a*f^2+((-4*d*f+e^2)^(1/2)*e-2*d*f+e^2)*c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.82, antiderivative size = 330, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 7, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {6728, 266, 63, 208, 1034, 725, 206} \[ \frac {f \left (\sqrt {e^2-4 d f}+e\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {f \left (e-\sqrt {e^2-4 d f}\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{\sqrt {a} d} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]

[Out]

(f*(e + Sqrt[e^2 - 4*d*f])*ArcTanh[(2*a*f - c*(e - Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*
f - e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*d*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sq
rt[e^2 - 4*d*f])]) - (f*(e - Sqrt[e^2 - 4*d*f])*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*
a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*d*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 +
c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]) - ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]]/(Sqrt[a]*d)

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 1034

Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
= Rt[b^2 - 4*a*c, 2]}, Dist[(2*c*g - h*(b - q))/q, Int[1/((b - q + 2*c*x)*Sqrt[d + f*x^2]), x], x] - Dist[(2*c
*g - h*(b + q))/q, Int[1/((b + q + 2*c*x)*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{a, b, c, d, f, g, h}, x] && NeQ[
b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c]

Rule 6728

Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a +
b*x^n + c*x^(2*n)), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {1}{x \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx &=\int \left (\frac {1}{d x \sqrt {a+c x^2}}+\frac {-e-f x}{d \sqrt {a+c x^2} \left (d+e x+f x^2\right )}\right ) \, dx\\ &=\frac {\int \frac {1}{x \sqrt {a+c x^2}} \, dx}{d}+\frac {\int \frac {-e-f x}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx}{d}\\ &=\frac {\operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+c x}} \, dx,x,x^2\right )}{2 d}-\frac {\left (f \left (1-\frac {e}{\sqrt {e^2-4 d f}}\right )\right ) \int \frac {1}{\left (e+\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+c x^2}} \, dx}{d}-\frac {\left (f \left (1+\frac {e}{\sqrt {e^2-4 d f}}\right )\right ) \int \frac {1}{\left (e-\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+c x^2}} \, dx}{d}\\ &=\frac {\operatorname {Subst}\left (\int \frac {1}{-\frac {a}{c}+\frac {x^2}{c}} \, dx,x,\sqrt {a+c x^2}\right )}{c d}+\frac {\left (f \left (1-\frac {e}{\sqrt {e^2-4 d f}}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{4 a f^2+c \left (e+\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {a+c x^2}}\right )}{d}+\frac {\left (f \left (1+\frac {e}{\sqrt {e^2-4 d f}}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{4 a f^2+c \left (e-\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {a+c x^2}}\right )}{d}\\ &=\frac {f \left (1+\frac {e}{\sqrt {e^2-4 d f}}\right ) \tanh ^{-1}\left (\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} d \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )}}+\frac {f \left (1-\frac {e}{\sqrt {e^2-4 d f}}\right ) \tanh ^{-1}\left (\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} d \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{\sqrt {a} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.74, size = 319, normalized size = 0.97 \[ \frac {\frac {\sqrt {2} f \left (\sqrt {e^2-4 d f}+e\right ) \tanh ^{-1}\left (\frac {2 a f+c x \left (\sqrt {e^2-4 d f}-e\right )}{\sqrt {a+c x^2} \sqrt {4 a f^2-2 c \left (e \sqrt {e^2-4 d f}+2 d f-e^2\right )}}\right )}{\sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {\sqrt {2} f \left (\sqrt {e^2-4 d f}-e\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {a+c x^2} \sqrt {4 a f^2+2 c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{\sqrt {a}}}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]

[Out]

((Sqrt[2]*f*(e + Sqrt[e^2 - 4*d*f])*ArcTanh[(2*a*f + c*(-e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[4*a*f^2 - 2*c*(-e^2 +
 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^
2 - 4*d*f])]) + (Sqrt[2]*f*(-e + Sqrt[e^2 - 4*d*f])*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[4*a*f^
2 + 2*c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d
*f + e*Sqrt[e^2 - 4*d*f])]) - (2*ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]])/Sqrt[a])/(2*d)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.02, size = 681, normalized size = 2.06 \[ -\frac {2 \sqrt {2}\, f \ln \left (\frac {-\frac {\left (e -\sqrt {-4 d f +e^{2}}\right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right ) c}{f}+\frac {2 a \,f^{2}-2 c d f +c \,e^{2}-\sqrt {-4 d f +e^{2}}\, c e}{f^{2}}+\frac {\sqrt {2}\, \sqrt {\frac {2 a \,f^{2}-2 c d f +c \,e^{2}-\sqrt {-4 d f +e^{2}}\, c e}{f^{2}}}\, \sqrt {4 \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )^{2} c -\frac {4 \left (e -\sqrt {-4 d f +e^{2}}\right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right ) c}{f}+\frac {4 a \,f^{2}-4 c d f +2 c \,e^{2}-2 \sqrt {-4 d f +e^{2}}\, c e}{f^{2}}}}{2}}{x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{\left (-e +\sqrt {-4 d f +e^{2}}\right ) \sqrt {-4 d f +e^{2}}\, \sqrt {\frac {2 a \,f^{2}-2 c d f +c \,e^{2}-\sqrt {-4 d f +e^{2}}\, c e}{f^{2}}}}-\frac {2 \sqrt {2}\, f \ln \left (\frac {-\frac {\left (e +\sqrt {-4 d f +e^{2}}\right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right ) c}{f}+\frac {2 a \,f^{2}-2 c d f +c \,e^{2}+\sqrt {-4 d f +e^{2}}\, c e}{f^{2}}+\frac {\sqrt {2}\, \sqrt {\frac {2 a \,f^{2}-2 c d f +c \,e^{2}+\sqrt {-4 d f +e^{2}}\, c e}{f^{2}}}\, \sqrt {4 \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )^{2} c -\frac {4 \left (e +\sqrt {-4 d f +e^{2}}\right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right ) c}{f}+\frac {4 a \,f^{2}-4 c d f +2 c \,e^{2}+2 \sqrt {-4 d f +e^{2}}\, c e}{f^{2}}}}{2}}{x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{\left (e +\sqrt {-4 d f +e^{2}}\right ) \sqrt {-4 d f +e^{2}}\, \sqrt {\frac {2 a \,f^{2}-2 c d f +c \,e^{2}+\sqrt {-4 d f +e^{2}}\, c e}{f^{2}}}}+\frac {4 f \ln \left (\frac {2 a +2 \sqrt {c \,x^{2}+a}\, \sqrt {a}}{x}\right )}{\left (-e +\sqrt {-4 d f +e^{2}}\right ) \left (e +\sqrt {-4 d f +e^{2}}\right ) \sqrt {a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x)

[Out]

-2*f/(e+(-4*d*f+e^2)^(1/2))/(-4*d*f+e^2)^(1/2)*2^(1/2)/((2*a*f^2-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1
/2)*ln((-(e+(-4*d*f+e^2)^(1/2))*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)*c/f+(2*a*f^2-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)
*c*e)/f^2+1/2*2^(1/2)*((2*a*f^2-2*c*d*f+c*e^2+(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/
2))/f)^2*c-4*(e+(-4*d*f+e^2)^(1/2))*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)*c/f+2*(2*a*f^2-2*c*d*f+c*e^2+(-4*d*f+e^2)
^(1/2)*c*e)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))-2*f/(-e+(-4*d*f+e^2)^(1/2))/(-4*d*f+e^2)^(1/2)*2^(1/
2)/((2*a*f^2-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2)*ln((-(e-(-4*d*f+e^2)^(1/2))*(x-1/2*(-e+(-4*d*f+e
^2)^(1/2))/f)*c/f+(2*a*f^2-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)*c*e)/f^2+1/2*2^(1/2)*((2*a*f^2-2*c*d*f+c*e^2-(-4*d
*f+e^2)^(1/2)*c*e)/f^2)^(1/2)*(4*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*(e-(-4*d*f+e^2)^(1/2))*(x-1/2*(-e+(-4
*d*f+e^2)^(1/2))/f)*c/f+2*(2*a*f^2-2*c*d*f+c*e^2-(-4*d*f+e^2)^(1/2)*c*e)/f^2)^(1/2))/(x-1/2*(-e+(-4*d*f+e^2)^(
1/2))/f))+4*f/(-e+(-4*d*f+e^2)^(1/2))/(e+(-4*d*f+e^2)^(1/2))/a^(1/2)*ln((2*a+2*a^(1/2)*(c*x^2+a)^(1/2))/x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {c x^{2} + a} {\left (f x^{2} + e x + d\right )} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^2 + a)*(f*x^2 + e*x + d)*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {1}{x\,\sqrt {c\,x^2+a}\,\left (f\,x^2+e\,x+d\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*(a + c*x^2)^(1/2)*(d + e*x + f*x^2)),x)

[Out]

int(1/(x*(a + c*x^2)^(1/2)*(d + e*x + f*x^2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x \sqrt {a + c x^{2}} \left (d + e x + f x^{2}\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(f*x**2+e*x+d)/(c*x**2+a)**(1/2),x)

[Out]

Integral(1/(x*sqrt(a + c*x**2)*(d + e*x + f*x**2)), x)

________________________________________________________________________________________